8 research outputs found

    KMOS Data Flow: Reconstructing Data Cubes in One Step

    Full text link
    KMOS is a multi-object near-infrared integral field spectrometer with 24 deployable pick-off arms. Data processing is inevitably complex. We discuss specific issues and requirements that must be addressed in the data reduction pipeline, the calibration, the raw and processed data formats, and the simulated data. We discuss the pipeline architecture. We focus on its modular style and show how these modules can be used to build a classical pipeline, as well as a more advanced pipeline that can account for both spectral and spatial flexure as well as variations in the OH background. A novel aspect of the pipeline is that the raw data can be reconstructed into a cube in a single step. We discuss the advantages of this and outline the way in which we have implemented it. We finish by describing how the QFitsView tool can now be used to visualise KMOS data.Comment: Contribution to "Ground-based and Airborne Instrumentation for Astronomy III', SPIE 7735-254 (June 2010). High resolution version can be found at http://spiedl.or

    Lyman-break galaxies at z~5 -I. First significant stellar mass assembly in galaxies that are not simply z~3 LBGs at higher redshift

    Get PDF
    We determine the ensemble properties of z~5 Lyman break galaxies (LBGs) selected as V-band dropouts to i(AB)<26.3 in the Chandra Deep Field South using their rest-frame UV-to-visible SEDs. By matching the selection and performing the same analysis that has been used for z~3 samples, we show clear differences in the properties of two samples of LBGs which are separated by ~1Gyr in lookback time. We find that z~5 LBGs are typically much younger (<100Myr) and have lower stellar masses (10^9Msol) than their z~3 counterparts. The difference in mass is significant even when considering the presence of an older, underlying population in both samples. Such young and moderately massive systems dominate the luminous z~5 LBG population (>70%), whereas they comprise <30% of LBG samples at z~3. This result is robust under all reasonable modelling assumptions. These intense starbursts appear to be experiencing their first (few) generations of large-scale star formation and are accumulating their first significant stellar mass. Their dominance in luminous LBG samples suggests that z~5 witnesses a period of wide-spread, recent galaxy formation. As such, z~5 LBGs are the likely progenitors of the spheroidal components of present-day massive galaxies. This is supported by their high stellar mass surface densities, their core phase-space densities, as well as the ages of stars in the bulge of our Galaxy and other massive systems. Their high star formation rates per unit area suggest that these systems host outflows or winds that enrich the intra- and inter-galactic media with metals. Their estimated young ages are consistent with inefficient metal-mixing on galaxy-wide scales. Therefore these galaxies may contain a significant fraction of metal-free stars as has been proposed for z~3 LBGs (Jimenez & Haiman 2006). [Abridged]Comment: Accepted for publication in MNRAS. 21 pages, 9 postscript figures. For a PDF file with high resolution figures, see http://www-astro.physics.ox.ac.uk/~averma

    Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Get PDF
    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36 or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshif

    The Radial Distribution of Star Formation in Galaxies at Z approximately 1 from the 3D-HST Survey

    Get PDF
    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of H emission for a sample of 54 strongly star-forming galaxies at z 1 in the 3D-HST Treasury survey. By stacking the H emission, we find that star formation occurred in approximately exponential distributions at z approximately 1, with a median Sersic index of n = 1.0 +/- 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 +/- 0.09 in H consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90.330 km s(exp 1-). The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z approximately 1 generally occurred in disks. The disks appear to be scaled-up versions of nearby spiral galaxies: they have EW(H alpha) at approximately 100 A out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds

    A CANDELS-3d-HST Synergy: Resolved Star Formation Patterns at 0.7 less than z less than 1.5

    Get PDF
    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multiwavelength broadband imaging from CANDELS andHalpha surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H alpha equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories

    Ultradeep near-infrared imaging of the HDF-south: rest-frame optical properties of high redshift galaxies

    Get PDF
    We have obtained ultradeep J_s, H and K_s near-infrared imaging of the Hubble Deep Field South WFPC2 field with the ISAAC camera on the VLT. The total integration time of 100 hours resulted in the deepest ground-based infrared observations to date and the deepest K_s-band data ever taken. This depth allows us to determine the spectral energy distributions of the high-redshift galaxies with unprecendented accuracy. Together with existing optical observations, we use the multicolor data to select high-redshift galaxies by their rest-frame optical light, and study their statistical properties and morphologies. We find a wide variety of morphologies: some are large in the rest-frame optical and resemble normal spiral galaxies, others are barely detected in the observers optical and have red NIR colors. The latter belong to a new population of galaxies at redshifts z>2, that is notably absent in the HDF-North. The spectral energy distributions of many of such red galaxies show distinct breaks, which we identify as the balmer break/4000 Angstrom break, and their contribution to the stellar mass density is estimated to be substantial. At redshift z~3, we find a clear excess of superluminious galaxies (> 5 L*_B(z = 0)), which is consistent with 1 magnitude of luminosity evolution. Overall, the results show the necessity of deep near-infrared imaging to obtain a full census of the high redshift universe
    corecore